
EMIT User Guide

Monitoring Tool of MEASURE Platform

•

EMIT Overview

EMIT is a set of web services that make possible to manage MQTT clients. In fact, EMIT allows users

to define some MQTT broker connections, to create some MQTT clients and to specify some MQTT

callbacks i.e. the MQTT message processes attached to MQTT clients and launched on MQTT message

reception. Moreover, EMIT makes possible to update MQTT client states i.e. to connect/disconnect from

MQTT brokers, to subscribe/unsubscribe to given topics and to publish messages on given topics.

Finally, EMIT makes possible to view the different MQTT client state updates and MQTT messages

received and stored by some MQTT client callbacks.

EMIT is provided as a web application i.e. with a HTML frontend to these web services that embeds a

JavaScript library that correspond to the HTTP clients of these web services. EMIT is also provided such

HTTP clients as a Java library. The usage of such HTTP client is illustrated thanks to the web interface

use cases below.

EMIT Installation

EMIT code base is available on GitHub at https://github.com/jeromerocheteau/emit. It consists of a set

of Java projects managed by the means of Maven. It can be compiled, packaged and deployed thanks

to the following commands:

• git clone https://github.com/jeromerocheteau/emit.git

• cd emit/emit-monitoring/

• mvn clean compile package install tomcat7:redeploy

EMIT runs on a Java application container such as Apache Jetty, Apache Tomcat, Apache TomEE, IBM

Webspehere, RedHat Jboss, Oracle Glassfish, etc.

The deployment settings can be modified into the Maven project description (pom.xml file) in order to

specify the application server onto the EMIT instance will be depoyed to and its credentials

Dependencies

EMIT requires that the following dependencies are already installed as shared libraries within the Java

application container:

• com.google.code.gson:gson:2.4

• org.mongodb:mongodb-driver:3.4.2

• org.mongodb:mongodb-driver-core:3.4.2

• org.mongodb:bson:3.4.2

• org.eclipse.paho:org.eclipse.paho.client.mqttv3:1.2.0

• com.github.jeromerocheteau:jdbc-servlet-api:1.0

https://github.com/jeromerocheteau/emit

An instance of EMIT is running at the URL http://app.icam.fr/emit and is accessible according to the

following credentials username: measure@emit.icam.fr and password: m3@suR

Editing MQTT Clients

EMIT provides 2 main use cases in order to configure MQTT client networks: the first one consists in

defining the connection settings to a given MQTT broker by specifying its URI and eventually its

username/password credentials (see Illustration). EMIT also provides a use case to define MQTT clients

merely by specifying its already registered MQTT broker (see Illustration).

Updating MQTT Client Callbacks

EMIT makes possible to define processes of MQTT message that are received by some MQTT clients.

Such processes are called MQTT callbacks and EMIT provides several built-in MQTT callback edition

use cases. Every MQTT callbacks returns a Boolean value according to the fact that the message

process ends successfully or not. The 5 main MQTT callbacks are described below.

The 1st MQTT callback consists in specifying the data type of the MQTT message payload: users specify

the data type from a built-in type selection list (see Illustration).

The 2nd MQTT callback consists in a MQTT topic filter or pattern matcher: user defines such pattern

(see Illustration).

Illustration 1: Editing MQTT Broker

Illustration 2: Editing MQTT Client

http://app.icam.fr/emit
mailto:measure@emit.icam.fr

The 3rd MQTT callack consists in persisting messages within a database: users speficy the collection

that messages will be stored into by selecting this collection between the messages collection and the

failures one (see Illustration).

The 4th MQTT callback consists in verifying a condition over MQTT message payloads: users define the

value, its type and the comparison operator among this operator set { =, ≠, < , >, ≤, ≥ } (see Illustration).

The MQTT feature callback returns true if and only if the condition is satisfied by the MQTT message

payload.

The 5th and last MQTT callback consists in a composite callback as it makes possible to test a first

MQTT callback and to dispatch the process flow to a second callback if the first callback ended

successfully and, eventually, to a third callback otherwise. Users have then to select the test, success

and failure callbacks from the selection list of the already defined MQTT callbacks (see Illustration).

Illustration 3: Editing MQTT Type Callback

Illustration 4: Editing MQTT Topic Callback

Illustration 5: Editing MQTT Storage Callback

Illustration 6: Editing MQTT Feature Callback

Updating MQTT Client States

The main EMIT use case consists in updating the different MQTT client states. In fact, EMIT makes

possible to connect or disconnect a MQTT client from its MQTT broker. EMIT makes possible to

subscribe or unsubscribe to a given topics from its related MQTT broker. EMIT makes also possible to

publish a message to a given topic to its related broker. In addition, EMIT makes possible to attach or

detach a MQTT callback to or from a MQTT client (see Illustration).

Viewing MQTT Client State Updates & Messages

EMIT provides 2 other use cases: EMIT makes possible to retrieve the different MQTT client state

updates (see Illustration) and EMIT makes possible to retrieve the MQTT messages persisted into the

Illustration 7: Editing MQTT Guard Callback

Illustration 8: Updating MQTT Client States

embedded database engine by the means of MQTT storage callbacks that have been attached to MQTT

clients (see Illustration).

Illustration 9: Viewing MQTT Client State Updates

Illustration 10: Viewing MQTT Client Messages

